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models with fluctuating exchange integrals 
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P J Safarik University, Komenskeho 14,041 54 KoSice. Czechoslovakia 

Received 9 May 1990, in final form 14 September 1990 

Abstract. The Ising ferromagnet with fluctuating exchange integrals has been investigated 
using the two-spin cluster approximation. The phase diagrams were obtained for both two- 
and three-dimensional systems. They show a re-entrant behaviour only for a square lattice. 
It is argued that this behaviour is expected in disordered systems where one has competition 
between ferromagnetic and antiferromagnetic interactions in a certain range of the con- 
centration of the bond mixture. 

1. Introduction 

During the last 20 years a considerable amount of theoretical and experimental work 
has been dedicated to the analysis of the magnetic properties of structurally disordered 
systems (see, e.g. ,  Kaneyoshi 1954). Theoretically, there exist a great number of soph- 
isticated techniques for discussing disordered magnets. For instance, in a series of 
papers, pure and diluted Ising ferromagnets with random exchange parameters have 
been investigated using the one-spin cluster approximation (Kaneyoshi et a1 1984, 
Kaneyoshi 1985, Mielnicki et af 1990). In all these papers the fluctuations of the exchange 
integrals were considered only for the square lattice. The common result is that the 
phase diagrams predict the existence of re-entrant magnetism, i.e. two-phase transitions, 
and the range where re-entrant behaviour occurs is considerably reduced with increase 
in the calculation accuracy. 

The purpose of this paper is to show that the existence of a re-entrant ferromagnetic 
phase is not a general characteristic of all lattices in which the fluctuations of the exchange 
integrals are present. For this reason we have evaluated phase diagrams for both two- 
and three-dimensional systems using the two-spin cluster method (Bobak and JaSEur 
1986) which is superior to the one-spin cluster approximation. The two-spin cluster 
method is able to discern between lattices of the same coordination number but of 
different dimensions (e.g. plane triangular and simple cubic); it is known that the one- 
spin cluster method fails in recovering this type of result (Tomczak et a1 1987). 
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2. The theory 

The Hamiltonian for a disordered Ising ferromagnet is 

(1) H =  - J . . s . s .  
'1 I I 

@.i) 
where si = t 1, Jij are the uncorrelated random exchange integrals and the summation 
runs over all neighbouring pairs. To describe the structural disorder in a simple way, we 
shall use the stochastic lattice model (Handrich 1969), in which the structural disorder 
is replaced by the fluctuation AJi j  from the mean exchange J in a crystalline lattice, 
namely 

J ,  = J + A J v .  (2) 

According to B6bak and JaSEur (1986), we can obtain an exact equation for a pair of 
neighbouring spins as follows: 

where rj, = p J i j ,  p = ( kBT) - l  and 
&(si -t s i )  = ([sinh(hi + hj)]/[cosh(hi + h,) + exp(-2t,)cosh(hl - hi)]) ( 3 )  

:-1 2 - 1  

hi = 2 f i k s k  h .  1 = 2 tip/ 
k =  1 / =  1 

with the terms k = j and 1 = i excluded from summations over k and 1 respectively. The 
angular brackets ( . . . ) indicate a thermal average defined as 

(A)  = Tr [ A  exp(-/3H)]/Tr[exp(-/3H)]. 

Here, in order to write the exact identity (3) in a form which is particularly amenable 
to approximation, the differential operator method will be used. In this method the 
following identity is used: 

exp(AD, + yDy + dD,)f(x, Y ,  z )  =f(x + A, y + Y, z + 8) (4) 
where 

D, = d/ax D, = d / d y  D, = d/dz 

are the differential operators. Applying these operators to (3), one obtains 
,:-1 :-1 I 

/:=o 
where 

Alk = COsh[t,k(Dj Dy)] + S k  Sinh[t,k(D. f D,)] 
B,, = cosh[t,/(D. - Dy)]  + s I  sinh[t,,(D, - D,)] 

f ( x ,  y ,  z )  = (sinh x)/(cosh x + exp z cosh y ) .  
and 

For deriving equation ( 5 )  from equation ( 3 ) ,  we have used the following relation: 

exp(ask) = cosh a + S k  sinh a. (6) 

Equation ( 5 )  is an expression for a particular configuration of exchange integrals, 
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and hence it is necessary to take an average over all possible configurations. However, 
it is clear that, if we try to treat exactly all the spin-spin correlations present in equation 
( 5 ) ,  the problem becomes unmanageable. Therefore, let us take an approximation 

(VI . . . S k )  = (S,)(S/) ' . ' ( S k ) .  (7) 
This approximation neglects correlations between different spins but takes relations 
such as (sf) = 1 exactly into account. Now applying the approximation (7) in equation 
( S ) ,  the configurational average (denoted by ( ,  . . ) c )  of ( 5 )  can be found. In the case of 
exchange interactions being given by independent random variables, equation ( 5 ) ,  upon 
performing the configurational average, reduces to 

(8) 
x = o  
j = 0  
z = o  

m = ~ ~ ~ P ~ - ~ ~ ~ / ~ z ~ c ~ ~ ~ ~ , k ~ ~ c ~ ~ ~ / , ~ ~ c l Z - l  m, Y ,  z )  

where m = ( ( s , ) ) ~  is the average magnetization. 

yoshi 1984) will be used, according to which we have 
For further calculations the Handrich-Kaneyoshi approximation (see, e.g. ,  Kane- 

((AJ,/)2")c = [((AJ,/)'),I" ((AJ,/)2"+')c = 0 (9) 
where n is an integer. By means of relation (2) and the approximation (9), the con- 
figurational averages are then given by 

(cOsh[t,k(D, 2 Dy)])c 1 cosh[t A(Dx * Dy)]  cosh[t(D, t Dy)] (10) 
(sin[t,,(D, k Dy)])c = cosh[tA(D, * Dy)]  sinh[t(D, t D,)] 

(exp( -2t,D,), = exp(-2tDz) cosh(2tAD2) 

A* = ((AJ,)*)C/J2 

(11) 

(12) 
where 

represents the mean square deviation in the distribution of the random exchange inte- 
grals. The results (10)-(12) can also be obtained by using a distribution function P(J,]) 
of the exchange integrals in the form 

P(J,)  = f { s [ J , ]  - J(l + A)] + 6[J , /  - J(l - A)]}. (13) 
We are now interested in the phase boundary of the model. Close to the critical 

temperature, where the magnetization is small, we can linearize equation (8), and then 
the second-order critical line is determined by the equation 

1 = [ ( z  - 1)/2'(' - ')I sinh(2tLD,) [cosh(2tcADx) + cosh(2t,AD,)]'-' 

x [cosh(2t,Dx) + ~osh(2 t ,D, ) ]~-~g(x ,  y )  
iL 

where 

andt, = J/k,Tc. Inobtaining(14)wehavemadeuseofthefactthatg(x, y )  = -g(-x, - y )  
and therefore only odd differential operator functions make non-zero contributions. 
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Figure 1 .  Two-spin cluster on the lattices with 
coordination number z = 6: ( a )  simple cubic 
lattice: ( b )  plane triangular lattice. 

Figure 2. Phase diagrams in the ( T ,  A j  space for 
different crystallographic lattices: curve a ,  simple 
cubic lattice; curve b,  triangular lattice; curve c. 
square lattice; curve d ,  honeycomb lattice. 

By performing a tedious but straightforward calculation, the right-hand side of 
equation (14) can be expressed as a sum of the functions g(x ,y )  with appropriate 
arguments x and y .  For instance, for the honeycomb lattice ( z  = 3), we have 

1 = (1/26)(g[4tc(1 + A), 01 + g[4tc(1 - A ) ,  01 + 2g[4tc, 4tcA] 

+ 4g[4t,, 01 + 8g[2tc, 2tc] + 4g[2tc(2 + A), 2tcA] 

+ 4g[2tc(2 - A), 2tcA] + 2g[2tc(1 + 2A). 2t,] 

+ 2g[2tc(l - 2A), 2tc] + 2g[2tc, 2tc(l + 2A)] 

+ 2g[2tc, 2tc(l - 2A)] + 4g[2tc(l + A), 2tc(1 + A)] 

+ 4g[2tc(l + A), 2t,(1 - A)] + 4g[2tc(l - A ) ,  2t,(l + A)] 

+ 4g[2tC(l - A), 2tc(l  - A)]}. (15) 

It should be noted here that equation (14) is the general equation for the critical 
temperature of a disordered Ising ferromagnet valid for any lattice with the coordination 
number z ,  except the plane triangular lattice. In particular, for the crystal case of A = 
0, one finds that the t;'-values are equal to 1.9870, 3.0250 and 5.0392 for honeycomb 
( 2  = 3), square ( z  = 4) and simple cubic ( 2  = 6) lattices, respectively. 

Now, on the basis of equation ( 5 ) ,  we shall consider the plane triangular lattice 
with coordination number z = 6. In the plane triangular lattice which is of the same 
coordination number as the simple cubic, each of the two central sites belonging to the 
cluster has, besides another central site, only three nearest neighbours of its own, and 
in addition two nearest neighbours shared with the central site (the latter are marked by 
4 and 8 in figure l(b)). On the other hand, in the cubic lattice, each of two central sites 
belonging to the cluster has, besides another central site, five nearest neighbours of its 
own (figure l(a)). Using the same approximations as above, this leads immediately to 
the following equation for the critical temperature of the disordered ferromagnetic 
triangular lattice: 
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+ sinh(4tCD,) cosh(6t,DY)]g(x, y )  

10057 

. 
.'i = 0 
y = 0  

It should be noted also that, for A = 0, from equation (16) we get t;' = 4.9504 which 
is different from the value of r ; '  for the simple cubic lattice. 

We are now in a position to examine the phase diagrams for both two- and three- 
dimensional disordered magnetic systems. The numerical results are given in the next 
section. 

3. Numerical results and discussion 

By solving equations (14) and (16) numerically, the critical lines in the ( T ,  A)-space are 
plotted in figure 2 for honeycomb, square, simple cubic and triangular lattices. 

As can be seen from this figure, for the square lattice only there is a A-range 
(1 < A < 1.1224) where two critical temperatures occur, which corresponds to the re- 
entrant phenomenon. It should be noted here that, for A > 1, one bond in (13) becomes 
negative; thus some interactions are antiferromagnetic, so that the effect of frustration 
may appear in the system. For the honeycomb lattice A < 1, all interactions are ferro- 
magnetic; hence no frustration of the lattice appears. As a result, only one value of 
critical temperature exists for a given value of A. 

On the other hand, the phase diagrams for plane triangular and simple cubic lattices 
do not exhibit the re-entrant behaviour even for A > 1. This can be understood by 
comparing our results with those obtained within the two-spin cluster approximation by 
Benayad et a1 (1988) for the square lattice. First of all it should be mentioned that the 
concentrationp of the bond mixture in the above paper corresponds to the value of 0.5 
in our considerations and that the parameter (Y is related to our parameter A by the 
equation 

a = (1 - A)/(1 + A).  

Further, as shown by Benayad et a1 (1988), there is the re-entrant behaviour for the 
range 0.429 < p < 0.597 and (Y < 0. Our A-range (1 < A < 1.1224) for a square lattice 
corresponds to -0.058 Q a < 0 andp = 0.5 which is in agreement with the results of the 
cited paper. Hence, the random fluctuations of the exchange interactions, leading to the 
appearance of ferromagnetic and antiferromagnetic bonds with the same concentration, 
may cause the re-entrant magnetism phenomenon in the square lattice. However, as 
seen from our calculations, competition between ferromagnetic and antiferromagnetic 
couplings with p := 0.5 does not lead to re-entrant behaviour for both triangular and 
simple cubic lattices, and the disorder may only lower the transition temperature. 
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Therefore, for lattices with coordination number z > 4 the effect of frustration is dim- 
inished in comparison with that of the square lattice. We believe that re-entrant pheno- 
mena are also possible in the lattices with z > 4, but the concentrations of the 
ferromagnetic and antiferromagnetic bonds must be different. 

Finally, it is worth mentioning that the A-range with re-entrant magnetism obtained 
for the square lattice in the present paper (1 < A < 1.1224) is somewhat larger than that 
obtained by Mielnicki eta1 (1990) (1 < A < 1.1218) from the one-spin cluster method in 
the framework of the first-order Matsudaira (1973) approximation. As the t i 1  -values 
for the perfect crystal case resulting from the one- and two-spin cluster approximations 
are 3.0898 and 3.0250, respectively, this result is in contradiction with the conclusion of 
Mielnicki et a1 (1990) that the range of A where re-entrant magnetism exists strongly 
reduces with increase in the calculation accuracy, The disagreement arises probably 
because, besides neglecting the correlations between next-nearest neighbours, the 
present treatment based on the approximation (7) also neglects (except for the honey- 
comb lattice) the correlations between nearest neighbours. It can therefore be concluded 
that correlations between nearest neighbours have-at least within the framework of 
the two-spin cluster approximation-a major effect on the range of A where re-entrant 
magnetism exists. 
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